
(12) United States Patent
Engler

(54) STATISTICAL INFERENCE OF STATIC
ANALYSIS RULES

(75) Inventor: Dawson Richards Engler, Menlo Park,
CA (US)

(73) Assignee: The Board of Trustees of the Leland
Stanford Junior University, Palo Alto,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 877 days.

(21) Appl. No.: 10/689,556

(22) Filed:	 Oct. 20, 2003

(51) Int. Cl.
G06F 17/00	 (2006.01)
G06N 5102	 (2006.01)

(52) U.S. Cl . .. 	 706/47
(58) Field of Classification Search 706/47

See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS

5,706,406 A * 1/1998 Pollock	 706/51
6,154,876 A * 11/2000 Haley et al 717/133
6,158,045 A * 12/2000 You	 717/124
6,185,506 B1* 2/2001 Cramer et at 506/8
6,240,374 B1 * 5/2001 Cramer et at 506/8
6,631,404 B1 * 10/2003 Philyaw	 709/217
6,636,892 B1 * 10/2003 Philyaw	 709/217
6,791,588 B1 * 9/2004 Philyaw	 715/862
6,820,256 B2 * 11/2004 Fleehart et at 717/155
6,970,916 B1 * 11/2005 Philyaw	 709/217
7,096,162 B2 * 8/2006 Cramer et at 703/1
7,136,758 B2 * 11/2006 Patterson et at 702/19

(1o) Patent No.:	 US 7,505,952 B1
(45) Date of Patent:	 Mar. 17, 2009

7,159,116 B2 * 1/2007 Moskowitz	 713/176
7,184,893 B2 * 2/2007 Cramer et at 702/19
7,392,285 B2 * 6/2008 Philyaw	 709/204
7,412,666 B2 * 8/2008 Philyaw	 715/852

2002/0046393 Al * 4/2002 Leino et at 717/7

OTHER PUBLICATIONS

Engler et al. "Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code'. Oct. 21, 2001, ACM 18th Sym-
posium on Operating Systems Priciples.*
Engler et al. "Checking System Rules Using System-Specific, Pro-
grammer-Written Compiler Extensions". 2000, Proceedings of hte
4th Symposium on Operating System Design and Implementation.*

(Continued)

Primary Examiner Michael B Holmes
(74) Attorney, Agent, or Firm—Crawford Maunu PLLC

(57)	 ABSTRACT

Various apparatus and methods are disclosed for identifying
errors in program code. Respective numbers of observances
of at least one correctness rule by different code instances that
relate to the at least one correctness rule are counted in the
program code. Each code instance has an associated counted
number of observances of the correctness rule by the code
instance. Also counted are respective numbers of violations
of the correctness rule by different code instances that relate
to the correctness rule. Each code instance has an associated
counted number of violations of the correctness rule by the
code instance. A respective likelihood of the validity is deter-
mined for each code instance as a function of the counted
number of observances and counted number of violations.
The likelihood of validity indicates a relative likelihood that a
related code instance is required to observe the correctness
rule. The violations may be output in order of the likelihood of
validity of a violated correctness rule.

25 Claims, 4 Drawing Sheets

US 7,505,952 B1
Page 2

OTHER PUBLICATIONS

Engler et al. "Checking System Rules Using System-Specific, Pro-
grammer-Written Compiler Extensions", 2000, Stanford Univer-
sity.*
Schneidewind. "Measuring and Evaluating Maintenance Process
Using Reliability, Risk, and Test Metrics" 1999, IEEE Transactions
on Software Engineering, vol. 25. pp. 769-781.*
Engler, D., Chelf, B., Chou, A., and Hallem, S., Checking System
Rules Using System-Specific, Programmer-Written Compiler Exten-
sions, Computer Systems Laboratory, Stanford University, Stanford,

CA, In Proceedings of Operating Systems Design and Implementa-
tion (OSDI), 16 pages.
Ernst, M., Cockrell, J., Griswold, W. and Notkin, D., Dynamically
Discovering Likely Program Invariants to Support Program Evolu-
tion, IEEE Transactions on Software Engineering, 27(2):1-25, Feb.
2001.
Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson.
T., Eraser: A Dynamic Data Race Detector for Multi-threaded Pro-
grams, ACM Transactions on Computer Systems, 15(4):391-411,
1997.

* cited by examiner

probability,
P

0

/ 100

'El 106

108

FIG. I

0	 to violations

FIG. 2

data
processing

system

application

1

operating
system

-f-'	 102

code
04	 analyzer

U.S. Patent	 Mar. 17, 2009	 Sheet 1 of 4
	

US 7,505,952 B1

U.S. Patent	 Mar. 17, 2009	 Sheet 2 of 4	 US 7,505,952 B1

STATISTICAL
ANALYSIS
PROCESS

(-202

Define correctness rules
for which the program
code is to be checked

1 r 204

Parse the program code,
checking for occurrences

of instances that are
compatible with each

correctness rule

/--206

Count for each instance,
occurrences where the

rule is observed and
occurrences where the

rule is violated

+	 (-208
Compute values of the z
statistic for proportions in

association with each
instance

210

Display error messages
associated with

occurrences that violated
the correctness rules, in
an order based on the
associated z statistics

1

END I	 FIG. 3

U.S. Patent	 Mar. 17, 2009	 Sheet 3 of 4	 US 7,505,952 B1

302

lock(I)	 start	 read/write(v)

304

locked(I)	 unlock(I)

read/write(v)
306

toibservance,

crement

count ,

unlock(I)

read/write(v)

308

^crement
violation

count read/write(v)

lock(I)	 FIG. 4

-

start

p=f0

354

p may
indicate
status

use(p)

35

increment
violation	 use(p)

count

the

check(p)

358

increment
observance

count

use(p)

FIG. 5

U.S. Patent	 Mar. 17, 2009	 Sheet 4 of 4
	

US 7,505,952 B1

start

bQ

404

bQ
encountered

exit

406
increment
	

incremen
observance	 violation	 aQ

count
	

count

FIG. 6

_cam
start

aQ

454

aQ
encountered

exit

,,-456
	

458
incremer
	

increment
violation	 observance

	
bQ

count
	

count ,

FIG. 7

US 7,505,952 B1
1	 2

STATISTICAL INFERENCE OF STATIC 	 considerations often prohibit manually specifying or discov-
ANALYSIS RULES	 ering all the correctness rules that a large package must obey.

GOVERNMENT LICENSE RIGHTS
	

SUMMARY

This invention was made with Government support under
contracts MDA904-98-C-A933, awarded by the Defense
Advanced Research Projects Agency; NASI-98139 awarded
by the NASA Langley Research Center; and F29601-01-2-
0085 awarded by the United States Air Force. The Govern-
ment has certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates generally to analysis of soft-
ware.

BACKGROUND

Computers and accompanying software touch nearly every
aspect of our lives. Computers and software extend well
beyond the computer workstations used in many vocations.
For example, extensive computer systems and supporting
software are used in telephone services, both mobile and
wired, airline reservation systems, point-of-sale terminals at
retail outlets, and at all levels of the health-care industry. As
society increasingly relies on computers and software, there
is a corresponding rising expectation that the systems will be
reliable and not be prone to failure.

Not only are computers and software affecting more daily
activities, but the size and complexity of software packages
are increasing as well. A software package of previous gen-
erations may have been on the order of thousands or tens-of-
thousands of lines of code. Today, applications with millions
of lines of code are not uncommon. Managing the growth of
software while attending to reliability issues challenges even
the most talented software developers.

The presence of programming errors, or "bugs," grows
with the size and complexity of software applications. For
some applications, bugs may be tolerable. However, for life-
critical applications, a bug may result in loss of life. Thus,
ensuring that a software package is free of bugs may not only
be a desirable part of the software development effort, but a
necessary undertaking.

Both manual and automated processes have been used in
attempts to verify that a software package is free of bugs.
Manual processes include inspection of source code by a
developer and colleagues and testing of the software's basic
functions while the software is running. Automated processes
include software drivers that interact with the software pack-
age, as well as software tools that analyze and report deficien-
cies in the source code.

Manual inspection of source code is costly, time consum-
ing, and limited in effectiveness by the availability of
resources, such as time and people. Whether automated or
manual, testing may require elaborate set-up procedures,
require a great deal of time, and exercise only the main func-
tions of the software package. Thus, some portions of the
software package may go untested and bugs go uncovered
before the software is deployed for real-life use.

Software tools that analyze source code and report bugs
may be very useful in uncovering certain types of bugs. How-
ever, one obstacle to finding program errors in a large soft-
ware package is the availability of the correctness rules that
the source code must follow. These rules are often undocu-
mented or specified in an ad hoc manner, which makes assem-
bling the rules for use by a tool difficult. In addition, cost

Various apparatus and methods are disclosed for identify-
ing errors in program code. Respective numbers of obser-
vances of at least one correctness rule by different code
instances that relate to the at least one correctness rule are

io counted in the program code. Each code instance has an
associated counted number of observances of the correctness
rule by the code instance. Also counted are respective num-
bers of violations of the correctness rule by different code
instances that relate to the correctness rule. Each code

15 instance has an associated counted number of violations of
the correctness rule by the code instance. A respective likeli-
hood of the validity is determined for each code instance as a
function of the counted number of observances and counted
number of violations. The likelihood of validity indicates a

20 relative likelihood that a related code instance is required to
observe the correctness rule. The violations may be output in
order of the likelihood of validity of a violated correctness
rule.

25	 BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in con-
sideration of the Detailed Description of various embodi-
ments of the invention that follows in connection with the

30 accompanying drawings, in which:
FIG. 1 is a block diagram of a system in which a program

code analyzer automatically infers correctness rules from
program code and uses the correctness rules to assist in iden-
tifying and correcting program bugs, according to an example

35 embodiment of the present invention;
FIG. 2 illustrates a normal probability distribution of the

ratio of observances to violations of a rule by program code;
FIG. 3 is a flowchart of an example process for inferring

errors in source code by statistically analyzing the source
4o code;

FIG. 4 is an example state diagram for inferring whether a
lock on one variable is used to protect another variable;

FIG. 5 is an example state diagram for inferring whether a
45 function must be checked for failure after returning control;

FIG. 6 is an example state diagram for inferring whether
one function must not follow another function; and

FIG. 7 is an example state diagram for inferring whether
one function must follow another function.

50 While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawing and will be described in detail.
It should be understood, however, that the intention is not to
limit the invention to the particular embodiments described.

55 On the contrary, the intention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the invention.

DETAILED DESCRIPTION
60

The present invention is directed to an approach for ana-
lyzing software. According to one example embodiment of
the present invention, such checking information is automati-
cally extracted from the source code itself, thereby avoiding

65 the need for a priori knowledge of system rules. The invention
finds code that is incorrect without programmer specification
of rules for correct code. In another embodiment, the correct-

US 7,505,952 B1
3

ness rules are automatically derived from the program code
and ranked by probable validity.

FIG. 1 illustrates a system 100 in which a program code
analyzer 102 automatically infers correctness rules from pro-
gram code 104,106 and uses the correctness rules to assist in
identifying and reporting program bugs, according to an
example embodiment of the present invention. The analyzer
can be deployed on a variety of different classes of data
processing systems 108, ranging from desktop computers to
large-scale servers. The analyzer is useful in any data pro-
cessing arrangement or software development environment
in which program code is developed and tested. The analyzer
may be bundled with a data processing arrangement and a
suite of software tools, as part of a suite of software develop-
ment tools marketed separate from the host data processing
arrangement, or as a stand-alone tool.

Analyzer 102 is useful for finding errors in all types and
levels of software. For example, the analyzer is useful in
finding errors in operating system software 104 as well as in
application software 106. Without adequately eliminating
program bugs from the operating system and other mission-
critical software, the data processing system on which the
software executes is essentially useless. Thus, analyzer 102 is
critical to not only the stability of host data processing system
108, but also to the stability of other data processing systems
that are targeted for software developed on system 108. As
explained below, various embodiments of the invention are
useful in automatically identifying correctness rules and
assisting in identifying false-positive error reports.

An example is presented below to illustrate automatically
identifying correctness rules by statistical inference. One
example addresses how to infer which functions can return
NULL pointers. This is accomplished by counting the num-
ber of times the program code compares the result of each
function against NULL versus the number of times the code
uses the result without any comparison. The higher the ratio
of uses-with-checks to uses-without-checks, the more likely
the function must be checked. Another example addresses
how to determine whether two functions, aO and bO must be
paired. This can be determined by counting the number of
times a() appears with b() versus the number of times each
function appears without the other. Functions that must be
paired will have a high ratio of paired calls to unpaired calls.

To determine whether a correctness rule is valid, it is
assumed that the rule is valid, and the number of times the
code follows the rule (observances) is counted versus the
number of times the code does not (violations) follow the rule.
The larger the skew in evidence, the more likely that the rule
is valid.

The ideas of hypothesis testing are used to weigh the evi-
dence. The rules are viewed as binary trials (independent
events that have exactly one of two discrete outcomes). To
weigh such evidence, the binomial formula is used to com-
pute the probability that an event had k successes (obser-
vances) out of n attempts given that the probability of success
is p:

n	 n-kk x P, (1 - P)

For a large number of trials, the ratio k/n should approach
p. If the ratio does not, this is strong evidence that the true
probability is not p. Conversely, for a small number of trials,
it is not unexpected that k/n is far from p. A degenerate
example is a single toss of a fair coin: the frequency of heads

4
will be 0 or 1, while the expected ratio is 0.5. The expected
range of the divergence can be quantified using the standard
deviation, which for the binomial formula is given by:

5	
a	 n= px 1-p

The standard deviation approaches zero as n increases to
infinity. The ratio k/n is expected to converge to p given an
infinite number of trials.

The following measurement computes how many standard
10

deviations away the observed ratio of observances to viola-
tions is from the expected ratio for the given number of trials:

z-(k/n-p)/ x(1-p)1n

As the number of standard deviations increases, the
15

improbability of the event does as well. This normalized
measurement permits ranking of different sample sizes with
different ratios from most to least probable. This is done by
counting the number of observances and violations fora given

20 trial, and ranking the violations (thepotential errors)usingthe
computed z value above. This process is referred to as z-rank-
ing.

That value that is used for p is selected based on the
assumption that the code is usually correct. Thus, p is set to a

25 value >-0.8, depending on how harshly violations are to be
penalized. For example, a value of 0.8 corresponds to one
violation in every five occurrences. Error rates equal to this
will have a z value of zero; error rates better than it will have
a positive value (they are a positive number of standard devia-

30 tions from p); and errorrates worse will have a negative value.
FIG. 2 illustrates a normal probability distribution of the

ratio of observances to violations of a rule by program code.
The point labeled a in the figure is the mean of the distribu-
tion. If the ratio of observances to violations in the program

35 code has the value a, then the program code behaves accord-
ing to a hypothesized rule. The ranking, computed using the z
formula above, for point a is 0.

For point b, the observed ratio exceeds the expected ratio.
Because the evidence suggests that the hypothesized rule is

40 almost always followed, violations of that rule are important.
The computed z value for point b is a normalized measure of
the distance along the x-axis between points a and b. The
normalization factor in the z formula accounts for differences
in population size. Thus, the computed z value for point b will

45 be greater than 0 and any violations of the rule at point b will
be ranked above those at point a.

For point c, the ratio of observances to violations for a rule
is substantially less than expected, which indicates that the
hypothesized rule is not valid. In this case, the z rank for

50 violations of the rule at point c will be a negative number, and
these violations will be ranked lowest.

FIG. 3 is a flowchart of an example process for inferring
errors in source code by statistically analyzing the source
code. The process generally entails parsing input program

55 code for observances and violations of various hypothesized
correctness rules (steps 202, 204). The observances and vio-
lations are counted by occurrences of instances that are rel-
evant to the correctness rules (further explanation of the terms
correctness rule, instance, relevant, occurrence, observance,

6o and violation is provided in the following paragraph), and the
counted observances and violations are used to compute a z
statistic value for each instance (steps 206, 208). The state
diagrams of FIGS. 4-7 further illustrate the counting of obser-
vances and violations for 4 different examples of correctness

65 rules. The violations may then be sorted by the z statistic
values computed for the instances, with the sorted order being
violations that are most likely to be errors to violations that

US 7,505,952 B1

5

are least likely to be errors (step 210). The violations may then
be inspected to determine which violations are actual errors.
It will be appreciated that at some point in the sorted viola-
tions the associated z statistic values may be indicative of
false-positive violations (violations that are not actually
errors), the inspection of the errors may stop at that point.

The following terms are used in this description, and the
following explanation is provided so that the various working
examples and embodiments of the invention may be better
understood. The terms include: correctness rule, instance,
relevant, occurrence, observance, and violation. A "correct-
ness rule" specifies a generalized hypothesis of program code
usage that is believed to be correct usage. For example, a
hypothesis might be that correct program code obtains some
lock before manipulating some variable, and the correctness
rule may be states as lock(1) protects v, where 1 is a general-
ized specification of a lock and v is a generalized specification
of the protected variable.

An "instance" refers to one or more specific instructions in
the program code that are "relevant' to a correctness rule and
that allow checking of whether an "occurrence" observes or
violates the correctness rule. "Relevant' in this description is
different from "observe" or "observance." "Relevant' means
that the one or more specific instructions satisfy some set of
criteria, and the relevant instructions may be checked as to
whether the instructions "observe" or "violate" the correct-
ness rule. For example, an instance may be a call in the
program code, such as lock(MASTER _RECORD), where
MASTER—RECORD is a specific variable defined in the
program. This instance is relevant to the correctness rule,
lock(1) protects v, because further parsing of the code may be
performed to determine which program variables are manipu-
lated while the lock of MASTER—RECORD is in effect. It
should be understood that lock(MASTER_RECORD) is an
example of one instance, and lock(MASTER_TABLE) is an
example of another instance that is relevant to the correctness
rule.

An "occurrence" relates to an instance and is used to deter-
mine whether the correctness rule has been observed or vio-
lated, and thereby count an observance or count a violation.
For example, if the function, read(home_address), follows
lock(MASTER _RECORD) and is called before MASTER_
RECORD is unlocked, then the calls to lock(MASTER_
RECORD) and read(home_address) define an occurrence in
which the correctness rule is observed. If at some other point
in the program code, read(home_address) is called without
having first called lock(MASTER —RECORD), then this is
another occurrence, but the occurrence violates the correct-
ness rule. It should be understood that a call to write
(home—address) that follows lock(MASTER _RECORD) is
another occurrence related to the lock(MASTER_RECORD)
instance.

The observances and violations of a correctness rules are
counted for each instance. For example, if the function, read
(home—address), follows lock(MASTER _RECORD) and is
called before MASTER _RECORD is unlocked, the occur-
rence is counted as an observance for the lock(MASTER_
RECORD) instance. Separate counts of observances and vio-
lations are performed for other instances. For example, sepa-
rate counts are performed for the occurrences related to the
instance, lock(MASTER _TABLE).

In one example embodiment, the correctness rules may be
defined and checked using a high-level state machine lan-
guage. An example language is MetaL. Those skilled in the
art will appreciate that the checkers may be implemented as
extensions to a compiler or as part of a stand-alone analysis
tool. Example 1 below illustrates code that implements a

6

statistical checker that infers which functions can return
NULL. The statistical checker tracks pointers returned by any
routine rather than just pointers returned from a single func-
tion, such as kmalloc. The checker outputs a VIOLATION

5 message when a pointer is used without a check against
NULL, and outputs an OBSERVANCE message when a
pointer is used after a check against NULL.

sm null_checker_stat local {
state killvars decl any —pointer v;

10	 decl any_fn_call call;
decl any_args args;
decl any_expr x, y;

Put any pointer returned by a function in
unknown state and record function name in

15	 // data field.
start:

{ v = call(args) } > v.unknown,
{ mc_v_set_data(v, mc_identifier(call)); }

20	 v. unknown:
{ (v NULL)	 (v != NULL) } > v. stop,

{ v_note("NULL_STAT", v,
"Checking ptr [OBSERVANCE=$data]"); }

11 *(any *)v } 11 { memset(v, x, y) } — > v.stop,
25	 { V_err("NULL_STAT", v,

"Using V"$nameA" illegally! [VIOLATION=$data]

}
30 Example 1

The code in Example 2, below, illustrates application of the
checker of Example 1 to a specific segment of program code.

void v_contrived(int *p, int *q) {
q=malloc(sizeof *q);

35 // Checking ptr [OBSERVANCE=malloc]
if(!q)

return;
p = malloc(sizeof *p);
// Using "p" illegally! [VIOLATION=malloc]

40	 memset(p, 0, sizeof *p);
p= too (;
*p; // Using "p" illegally! [VIOLATION=foo]
q= too(;

45	 *q ; // Using "q" illegally! [VIOLATION=foo]
}
Example 2

There are four calls to functions that return a pointer: two for
malloc and two for too. The returned pointer of malloc is

50 checked once before use (an observance) and used once with-
out checking (a violation). Both calls to too use the return
pointer without checks (two violations). Thus, the z-rank for
the single malloc error message will be:

55	 1/2-0.8/ F. 8 1-0.8 2=106

And the z value for the two error messages for too will be

0/2-0.8/ FO. 8*(1-0.8)/2=2.83

6o Thus, the error for malloc will be ranked above the errors for
too; in general the counts and skew are muchhigher. The error
message for malloc will be ranked above the two for too,
since malloc has one observance and one violation, while too
has no observances and two violations.

65 FIG. 4 is an example state diagram for inferring whether a
lock on one variable is used to protect another variable. To
infer those variables, v, that must always be protected by

US 7,505,952 B1
7

locks, 1, the checker is configured with the definition of those
operations capable of manipulating a variable (shown as read/
write in the figure). This definition depends on the particular
programming language, but it is a language independent con-
cept. Similarly, those operations are associated with locking
and unlocking a resource is configured in the checker (shown
as lock or unlock in the figure).

When lock operation is encountered by the checker, the
checker transitions from start state 302 to locked(1) state 304,
indicating that the particular lock named, 1, is now locked. An
unlock operation on 1 before any read/write operations are
performed on 1 returns the checker the start state 302. If any
named storage location in the program (generically referred
to as v) is accessed while in the locked state 304, the checker
increments the observance count (state 306). Each additional
read/write operation while in state 306 causes the checker to
increment the observance count. An unlock(1) encountered by
the checker while in state 306 causes the checker to transition
back to start state 302. Separate observance and violation
counts are associated with different pairs of locks and vari-
ables. For example, one set of counts is associated with the
pair lock, 1-1, and variable, v-1, and another set of counts is
associated with lock, 1-1, and variable, v-2. An inferred rule
for the 1-1, v-1 pair is of the form `9-1 must protect accesses to
V-111

If v is accessed outside the locked state 304, the checker
increments the violation count (state 308). Each additional
read/write operation while in state 308 causes the checker to
increment the violation count. A lock(1) encountered by the
checker while in state 308 causes the checker to transition to
locked(1) state 304.

FIG. 5 is an example state diagram for inferring whether a
function must be checked for failure afterreturning control. A
checker that implements the state diagram maybe used to find
errors where the results returned by functions are not checked
or are incorrectly checked for failure. Two types of errors may
be detected with checkers implemented according to the state
machine. One type of error is the failure to check that a NULL
pointer was returned from a function before dereferencing the
pointer. The second type of error is the failure to check integer
codes returned from a function before using results of the
function.

An example area in which problems of this nature may
occur is in the kernel code of an operating system. Kernel
code must check for failure at every resource exhaustion or
access control point. The enormous number of such cases
makes these types of errors common. Another example prob-
lem area is the failure of program code to check for the failure
of non-memory allocation functions. These types of failures
may not be manifested by a complete system failure and
thereby make uncovering the source of the problem more
difficult.

To infer functions that must be checked for failure, a
checker is configured to detect when the results returned by a
function are used in the program code and detect when the
program code checks the results before using the results. The
checker assumes that all functions may return results that
must be checked before it is appropriate to use the results.

When the checker finds that results are returned from a
function (p--f()), the check transitions from start state 352 to
state 354, in which the results, p, may indicate a failure or
status returned by function f. If the results, p, are used (use(p))
before the results are checked, the checker transitions to state
356 and increments the violation count. Each subsequent use
of p without checking the results causes the checker to further

8
increment the violation count. It will be appreciated that
separate observance and violation counts are made for each
function that returns results.

If the results, p, are checked (check(p)) before the results
5 are used, the checker transitions to state 358 and increments

the observance count. Each subsequent use of p causes the
checker to further increment the observance count.

Another category of correctness rules that may be inferred
from analysis of the program code includes temporal rules.

10 Temporal rules are those in which sequences of actions must
be followed. For example, one temporal rule is, no <a> after
, where <a> and denote actions a and b. A specific
instance is that freed memory cannot be subsequently refer-
enced. Another temporal rule is, must follow <a>, for

15 example, an unlock action must follow a lock action. A con-
textual temporal rule is, in context <x>, do after <a>. A
specific instance of a contextual temporal rule is on an error
path (denoted, in context <x>), reverse the side effects by
doing then <a>.

20 FIG. 6 is an example state diagram for inferring whether
one function must not follow another function. To infer func-
tions, a, that must not follow functions, b, the checker
assumes that all functions that are encountered are possible
candidates. Whenever a function call is encountered, the

25 checker transitions from start state 402 to b() encountered
state 404. If the program code exits function b's scope (e.g.,
exits or returns from b()) without a call to a, the checker
transitions to state 406 and increments the observance count.
If the checker encounters a call from state 404, the checker

so transitions to state 408 and increments the violation count.
In an example application, this rule is used to check

whether the program code attempts to access memory that has
been freed. Without using the inference techniques of the

35 various embodiments of present invention, finding all viola-
tions of the rule may be difficult because many systems have
a large set of deallocation functions, ranging from general-
purpose routines, to wrappers around these routines, to a
variety of ad hoc routines that manage their own internal free
lists. A checker implemented in accordance with the state

4o
diagram may be used to infer all of these types of deallocation
techniques.

FIG. 7 is an example state diagram for inferring whether
one function must follow another function in the program

45 code. To infer functions b that must follow functions a, the
checker is configured to assume that all functions encoun-
tered are possible candidates. When a function call is encoun-
tered in the program code, the checker transitions from start
state 452 to aO encountered state 454. If function a's scope is

50 exited before invoking a call to b, the checker transitions to
state 456 and increments the violation count. If a call to b is
encountered, the checker transitions to step 458 and incre-
ments the observance count.

A checker implemented according to the state diagram
55 assumes that all possible functionpairs must observe the rule.

For each function pair, f, f, the checker counts the number of
times that each pair is encountered (n), and the number of
times each pair violates the rule (e). The pairs are then ranked
by computing the z statistic for each pair as described previ-

60 ously for the function-argument pairs.
Various other embodiments address controlling the very

large number of combinations of function pairs likely to be
present in the program code. In one embodiment, all possible
paths are pre-processed to identify all plausible pairs. In

65 another embodiment, the number of false positives may be
reduced by using the z statistic to rank violations both by
function pair plausibility as well as by individual violation.

US 7,505,952 B1
9

The plausible pairs are identified by scanning the program
code for occurrences of function call sequences that conform
to a selected set of patterns. The function pairs are selected
from these occurrences and provided to the checker. The
checker then limits counting of occurrences and violations to
these specific function pairs.

Examples 1, 2, and 3 below illustrate three idiomatic func-
tion call patterns.

p--foo(...);

bar(p);

baz(p);
Example 1
foo(p....

bar(p....

baz(p, ...);
Example 2
too();

bar();

baz();
Example 3
The pattern of Example 1 describes a function call

sequence in which the result returned by a function is
assigned to a variable that is then passed as the first argument
to more than one subsequent function call. An example of this
is when a handle is returned, used in some number of calls,
and then possibly released. The pattern identified from
Example 1 would be foo:bar:baz. The checker looks at the full
trace and, in the most general case, extracts all possible pairs.
For example, the checker checks for the function pair foo:bar
and separately checks for the function pair bar:baz. This may
not be feasible in practice so only the pair foo:baz is consid-
ered viable, thereby limiting the analysis to the first and last
function in the trace.

The pattern of Example 2 describes a function call
sequence in which a variable is passed without an initial
assignment. Again the trace is foo:bar:baz, which has 3 pos-
sible pairs (foo:bar, foo:baz, andbar:baz), althoughthe search
may be narrowed as previously described. The distinction
from Example 1 is whether or not p=foo() has been found
prior to the sequence in Example 2.

The pattern of Example 3 describes a function call
sequence in which there is a series of functions calls in which
no arguments are passed. The trace is foo:bar:baz, which has
3 possible pairs.

The plausible function pairs may be selected from the set of
occurrences that conform to the set of patterns (e.g., the
patterns from Examples 1, 2, and 3) in the program code. In
one embodiment, the occurrences may be ranked using the z
statistic. An observance is counted for an occurrence of a
function pair in the code (e.g., foo:baz). A violation is counted
when the first function of a pair occurs without an occurrence
of the second function (e.g., foo:brak, without an occurrence
of baz).

The number of false positives may be reduced by using the
z statistic to rank violations both by function pair plausibility
as well as by individual violation. For example, if the program
code includes many function calls to function a with subse-
quent calls to function b, a false positive may result where
there is single call to function a and no subsequent call to
function b. This type of false positive may occur, for example,
if a wrapper routine separates the call to a from the call to b,

10
such as where a locking wrapper function acquires a lock but
does not release the lock. It would be desirable to somehow
rank the false positive violation below other violations of the
rule. In one embodiment, this is accomplished by computing

5 an additional z statistic to rank the errors within each checked
function based on the number of paths within that function
that contain a given a-b pair (n in the z statistic computation)
versus the number of paths that only contain a (k in the z
statistic computation). This additional ranking results in the

io most likely errors being ranked higher.
Violations are thereby grouped according to function pair,

with the groups sorted by z statistic ranking of the function
pair. The z statistic ranking of each function pair is computed
in terms of the number of times that each pair is encountered

15 and the number of times the rule is observed as previously
described. Within each group, violations are sorted by the z
statistic of the individual error.

Those skilled in the art will appreciate that various alter-
native computing arrangements would be suitable for hosting

20 the processes of the different embodiments of the present
invention. In addition, the processes may be provided via a
variety of computer-readable media or delivery channels such
as magnetic or optical disks, tapes, electronic storage devices,
or as application services over a network.

25 While the present invention has been described with refer-
ence to several particular example embodiments, those
skilled in the art will recognize that many changes may be
made thereto without departing from the spirit and scope of
the present invention. The present invention is applicable to a

30 variety of implementations and other subject matter, in addi-
tion to those discussed herein.

What is claimed is:
1. A method for identifying errors in program code, com-

35 prising:
performing by a processor the steps including,

counting in the program code respective numbers of
observances of at least one correctness rule by differ-
ent code instances that relate to the at least one cor-

40 rectness rule, wherein each code instance has an asso-
ciated counted number of observances of the
correctness rule by the code instance;

counting in the program code respective numbers of
violations of the at least one correctness rule by dif-

45 ferent code instances that relate to the at least one
correctness rule, wherein each code instance has an
associated counted number of violations of the cor-
rectness rule by the code instance;

determining for each code instance a respective likeli-
50 hood of validity of the code instance as a function of

the counted number of observances and counted num-
ber of violations, wherein the likelihood of validity
indicates a relative likelihood that a related code
instance is required to observe the correctness rule;

55	 and
outputting the code instances in order of the likelihood

of validity of a violated correctness rule.
2. The method of claim 1, wherein the determining step

further comprises determining a likelihood of the validity of
60 each code instance as a function of an expected ratio of

observances to violations, the counted number of obser-
vances, and the counted number of violations.

3. The method of claim 2, wherein the determining step
further comprises statistically ranking each code instance

65 according to a number of standard deviations away, a ratio of
the counted number of observances to the counted number of
violations is from the expected ratio.

US 7,505,952 B1
11

4. The method of claim 3, wherein statistically ranking
each code instance includes determining a z statistic for pro-
portions.

5. The method of claim 1, further comprising:
wherein a first correctness rule specifies that a variable

must be protected by a lock before accessing the vari-
able;

the step of counting an observance of the first correctness
rule by a particular code instance includes identifying
program code that locks a particular first variable fol-
lowed by program code that accesses a particular second
variable; and

the step of counting a violation of the first correctness rule
by the particular code instance includes identifying pro-
gram code that accesses the particular second variable
where no preceding program code locks the particular
first variable.

6. The method of claim 1, further comprising:
wherein a first correctness rule specifies that invocation of

a first function must not follow an invocation of a second
function in the program code;

the step of counting an observance of the first correctness
rule by a particular code instance includes identifying
program code that includes a sequence of instructions
that includes invocation of a particular second instruc-
tion and no previous invocation of a particular first func-
tion; and

the step of counting a violation of the first correctness rule
by the particular code instance includes identifying pro-
gram code that includes a sequence of instructions in
which an invocation of a particular first function is
present following invocation of a particular second
instruction.

7. The method of claim 1, further comprising:
wherein a first correctness rule specifies that invocation of

a first function must follow an invocation of a second
function in the program code;

the step of counting an observance of the first correctness
rule by a particular code instance includes identifying
program code that includes a sequence of instructions
that includes an invocation of a particular first function
following invocation of a particular second instruction;
and

the step of counting a violation of the first correctness rule
by the particular code instance includes identifying pro-
gram code that includes a sequence of instructions that
includes an invocation of the particular second instruc-
tion without a previous invocation of the particular first
function.

8. The method of claim 1, further comprising:
wherein a first correctness rule specifies that data returned

from a first function must be tested for a status indica-
tion;

the step of counting an observance of the first correctness
rule by a particular code instance includes identifying
program code that includes a sequence of instructions
that includes an invocation of a particular first function
and a subsequent test of data returned from the particular
first function; and

the step of counting a violation of the first correctness rule
by the particular code instance includes identifying pro-
gram code that includes a sequence of instructions that
includes an invocation of a particular first function with-
out a subsequent test of data returned from the particular
first function.

12
9. An apparatus for identifying errors in program code,

comprising:
means for counting in the program code respective num-

bers of observances of at least one correctness rule by
5 different code instances that relate to the at least one

correctness rule, wherein each code instance has an
associated counted number of observances of the cor-
rectness rule by the code instance;

means for counting in the program code respective num-
10 bers of violations of the at least one correctness rule by

different code instances that relate to the at least one
correctness rule, wherein each code instance has an
associated counted number of violations of the correct-
ness rule by the code instance;

15 means for determining for each code instance a respective
likelihood of the validity as a function of the counted
number of observances and counted number of viola-
tions, wherein the likelihood of validity indicates a rela-
tive likelihood that a related code instance is required to

20	 observe the correctness rule; and
means for outputting the code instances in order of the

likelihood of validity of a violated correctness rule.
10. A system for identifying errors in program code, com-

prising:
25	 a data processing arrangement;

an analyzer hosted on the data processing arrangement, the
analyzer configured to,
count in the program code respective numbers of obser-

vances of at least one correctness rule by different
30 code instances that relate to the at least one correct-

ness rule, wherein each code instance has an associ-
ated counted number of observances of the correct-
ness rule by the code instance;

count in the program code respective numbers of viola-
35 tions of the at least one correctness rule by different

code instances that relate to the at least one correct-
ness rule, wherein each code instance has an associ-
ated counted number of violations of the correctness
rule by the code instance;

40 determine for each code instance a respective likelihood
of validity of the code instance as a function of the
counted number of observances and counted number
of violations, wherein the likelihood of validity indi-
cates a relative likelihood that a related code instance

45	 is required to observe the correctness rule; and
output the code instances in order of the likelihood of

validity of a violated correctness rule.
11. The system of claim 10, wherein the analyzer is further

configured to, in determining of likelihood of validity, deter-
50 mine a likelihood of the validity of each code instance as a

function of an expected ratio of observances to violations, the
counted number of observances, and the counted number of
violations.

12. The system of claim 11, wherein the analyzer is further
55 configured to, in determining of likelihood of validity, statis-

tically rank each code instance according to a number of
standard deviations away, a ratio of the counted number of
observances to the counted number of violations is from the
expected ratio.

60 13. The system of claim 12, wherein the analyzer is further
configured to, in statistically ranking each code instance,
determine a z statistic for proportions.

14. The system of claim 10, further comprising:
wherein the analyzer is configured to count code instances

65 of a first correctness rule that specifies that a variable
must be protected by a lock before accessing the vari-
able;

US 7,505,952 B1
13

in counting an observance of the first correctness rule by a
particular code instance, the analyzer is configured to
identify program code that locks a particular first vari-
able followed by program code that accesses a particular
second variable; and	 5

in counting a violation of the first correctness rule by the
particular code instance, the analyzer is configured to
identify program code that accesses the particular sec-
ond variable where no preceding program code locks the
particular first variable. 	 10

15. The system of claim 10, further comprising:
wherein the analyzer is configured to count code instances

of a first correctness rule specifies that invocation of a
first function must not follow an invocation of a second
function in the program code;	 15

in counting an observance of the first correctness rule by a
particular code instance, the analyzer is configured to
identify program code that includes a sequence of
instructions that includes invocation of a particular sec-
ond instruction and no previous invocation of a particu- 20

lar first function; and
in counting a violation of the first correctness rule by the

particular code instance, the analyzer is configured to
identify program code that includes a sequence of
instructions in which an invocation of a particular first 25

function is present following invocation of a particular
second instruction.

16. The system of claim 10, further comprising:
wherein the analyzer is configured to count code instances

of a first correctness rule specifies that invocation of a 30

first function must follow an invocation of a second
function in the program code;

in counting an observance of the first correctness rule by a
particular code instance, the analyzer is configured to
identify program code that includes a sequence of 35

instructions that includes an invocation of a particular
first function following invocation of a particular second
instruction; and

in counting a violation of the first correctness rule by the
particular code instance, the analyzer is configured to 40

identify program code that includes a sequence of
instructions that includes an invocation of the particular
second instruction without a previous invocation of the
particular first function.

17. The system of claim 10, further comprising: 45

wherein the analyzer is configured to count code instances
of a first correctness rule specifies that data returned
from a first function must be tested for a status indica-
tion;

in counting an observance of the first correctness rule by a 50

particular code instance, the analyzer is configured to
identify program code that includes a sequence of
instructions that includes an invocation of a particular
first function and a subsequent test of data returned from
the particular first function; and 	 55

in counting a violation of the first correctness rule by the
particular code instance, the analyzer is configured to
identify program code that includes a sequence of
instructions that includes an invocation of a particular
first function without a subsequent test of data returned 60

from the particular first function.
18. An article of manufacture, comprising:
an electronically readable storage medium configured with

instructions for causing a processor to perform the steps
including,	 65

counting in the program code respective numbers of
observances of at least one correctness rule by differ-

14
ent code instances that relate to the at least one cor-
rectness rule, wherein each code instance has an asso-
ciated counted number of observances of the
correctness rule by the code instance;

counting in the program code respective numbers of
violations of the at least one correctness rule by dif-
ferent code instances that relate to the at least one
correctness rule, wherein each code instance has an
associated counted number of violations of the cor-
rectness rule by the code instance;

determining for each code instance a respective likeli-
hood of the validity as a function of the counted num-
ber of observances and counted number of violations,
wherein the likelihood of validity indicates a relative
likelihood that a related code instance is required to
observe the correctness rule; and

outputting the code instances in order of the likelihood
of validity of a violated correctness rule.

19. The article of manufacture of claim 18, wherein the
electronically readable medium is further configured with
instructions for causing a processor, in determining a likeli-
hood of validity, to perform the step comprising determining
a likelihood of the validity of each code instance as a function
of an expected ratio of observances to violations, the counted
number of observances, and the counted number of viola-
tions.

20. The article of manufacture of claim 19, wherein the
electronically readable medium is further configured with
instructions for causing a processor, in determining a likeli-
hood of validity, to perform the step comprising statistically
ranking each code instance according to a number of standard
deviations away, a ratio of the counted number of observances
to the counted number of violations is from the expected ratio.

21. The article of manufacture of claim 20, wherein the
electronically readable medium is further configured with
instructions for causing a processor, in statistically ranking
each code instance, to perform the step comprising determin-
ing a z statistic for proportions.

22. The article of manufacture of claim 18, wherein a first
correctness rule specifies that a variable must be protected by
a lock before accessing the variable, and the electronically
readable medium is further configured with instructions for
causing a processor to perform the steps comprising:

in counting an observance of the first correctness rule by a
particular code instance, identifying program code that
locks a particular first variable followed by program
code that accesses a particular second variable; and

in counting a violation of the first correctness rule by the
particular code instance, identifying program code that
accesses the particular second variable where no preced-
ing program code locks the particular first variable.

23. The article of manufacture of claim 18, wherein a first
correctness rule specifies that invocation of a first function
must not follow an invocation of a second function in the
program code, and the electronically readable medium is
further configured with instructions for causing a processor to
perform the steps comprising:

in counting an observance of the first correctness rule by a
particular code instance, identifying program code that
includes a sequence of instructions that includes invo-
cation of a particular second instruction and no previous
invocation of a particular first function; and

in counting a violation of the first correctness rule by the
particular code instance, identifying program code that
includes a sequence of instructions in which an invoca-
tion of a particular first function is present following
invocation of a particular second instruction.

US 7,505,952 B1
15

24. The article of manufacture of claim 18, wherein a first
correctness rule specifies that invocation of a first function
must follow an invocation of a second function in the program
code, and the electronically readable medium is further con-
figured with instructions for causing a processor to perform
the steps comprising:

in counting an observance of the first correctness rule by a
particular code instance, identifying program code that
includes a sequence of instructions that includes an invo-
cation of a particular first function following invocation
of a particular second instruction; and

in counting a violation of the first correctness rule by the
particular code instance, identifying program code that
includes a sequence of instructions that includes an invo-
cation of the particular second instruction without a
previous invocation of the particular first function.

16
25. The article of manufacture of claim 18, wherein a first

correctness rule specifies that data returned from a first func-
tion must be tested for a status indication, and the electroni-
cally readable medium is further configured with instructions

5 for causing a processor to perform the steps comprising:
in counting an observance of the first correctness rule by a

particular code instance, identifying program code that
includes a sequence of instructions that includes an invo-
cation of a particular first function and a subsequent test

io	 of data returned from the particular first function; and
in counting a violation of the first correctness rule by the

particular code instance, identifying program code that
includes a sequence of instructions that includes an invo-
cation of a particular first function without a subsequent

15	 test of data returned from the particular first function.

	7505952-p0001.pdf
	7505952-p0002.pdf
	7505952-p0003.pdf
	7505952-p0004.pdf
	7505952-p0005.pdf
	7505952-p0006.pdf
	7505952-p0007.pdf
	7505952-p0008.pdf
	7505952-p0009.pdf
	7505952-p0010.pdf
	7505952-p0011.pdf
	7505952-p0012.pdf
	7505952-p0013.pdf
	7505952-p0014.pdf

